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Abstract  —  The screening process for DG interconnection 

procedures needs to be improved  in order to increase the 
penetration of PV systems on the distribution grid.  A significant 
improvement in the current screening process could be achieved 
by finding a method to classify the feeders in a utility service 
territory and determine the sensitivity of particular groups of 
distribution feeders to the impacts of high PV deployment levels. 
This paper presents a method for separating a utility’s 
distribution feeders into unique clusters using the k-means 
clustering algorithm.  An approach for determining the feeder 
variables of interest for use in a clustering algorithm is also 
described.  The Cubic Clustering Criterion is used as a quality 
metric for determining the optimum number of clusters in a large 
dataset of over 3000 feeders from western utilities.  An approach 
is illustrated  for choosing  the feeder variables to be utilized in 
the clustering process  and a method is identified for determining 
the optimal number of representative clusters.. 
 
Index Terms — clustering, distribution feeder, cubic clustering 

criterion, principal components 

I. INTRODUCTION 

This paper demonstrates a clustering methodology for 
classifying distribution feeders. The methodology groups 
utility feeders into specific groups of representative feeders. 
The representative feeders can be used develop a more 
accurate screening criteria and to help identify those feeders 
that are more likely to have issues with PV integration. One of 
the goals for improving screening criteria is to speed up the 
interconnection process for low risk feeders.  This effort is 
being done in partnership with the Electric Power Research 
Institute, Inc. for the California Solar Initiative Project to 
screen distribution feeders to develop alternatives to the 15% 
of peak load penetration Rule.   
The objective of this project is to develop new methods for 

quickly and accurately determining the capacity of individual 
feeders to accept new PV projects in order to streamline the 
interconnection process.  The data shown in this paper was 
provided by a participating utility and consisted of over 3000 
distribution feeders.  The goal was to identify seven potential 
representative feeders from the dataset for which detailed 
models could be created to evaluate high PV penetration 
scenarios. 

 II. THE 15% PENETRATION THRESHOLD 

The 15% threshold refers to the current practice for screening 
DG systems.  When the amount of aggregated DG exceeds 
15% of the peak load on a line section, supplemental studies 
are then required to determine if system impacts might arise 

due to the new interconnection request.  This practice was first 
implemented in 1999 through the California Public Utilities 
Commission (CPUC) Rule 21, and later adapted in the FERC 
SGIP and remains the current standard in the United States for 
interconnection procedures [1].  The rationale for the 15% 
threshold is based on the principal that unintentional islanding, 
voltage deviations, protection miscoordination, and other 
potential negative impacts are negligible as long as the DG on 
the line remains less than the minimum load.  The 15% of 
peak load was intended as a conservative proxy for the 
minimum load on the circuit. 
    It has been observed that the existing 15% screen may be 
conservative and not an accurate way to determine the PV 
hosting capability limit of a particular distribution feeder.  In 
many cases during supplemental studies required for 
interconnecting PV, even when penetration is substantially 
higher than 15%, the review does not identify any necessary 
system upgrades.  There are many examples of circuits in the 
United States with PV penetration levels above 15% where 
system performance, safety, and reliability have not been 
affected by crossing this threshold [2]. 

III. CLUSTERING ANALYSIS 

The purpose of clustering analysis for this project is to place 
feeders into groups, driven by feeder properties, such that 
feeders in a given cluster tend to be similar to each other, and 
dissimilar from feeders in other clusters [3], [4].  Two 
common methods for clustering are the hierarchical and 
partitional approach.  Hierarchical clustering begins by 
creating a cluster for each individual element, and combining 
clusters until the desired grouping is achieved.  Partitional 
algorithms work in the opposite direction by starting with a 
single cluster and dividing into the desired number of clusters.  
Classifying feeders based on the hierarchical algorithm was 
demonstrated in the PNNL Taxonomy Final Report [5].  A 
well-known and widely used partitional clustering method is 
the k-means algorithm [6].  For this project, the authors chose 
the k-means method due to its advantages with working with 
larger datasets. 
 

A. Principal Components Analysis 

Principal Component Analysis (PCA) is a multivariate 
projection method designed to extract and display the 
systematic variation in a data set [7].  For our study of 
distribution feeders where we are examining up to 12 



 

variables, it can reduce the complexity of the variation
projecting the dataset into a lower dimensional space.  
The PCA transformation will create a number of principal 

components equal to the number of variables in the 
data matrix. The components are uncorrelated, 
that the first few retain most of the variation present in all of 
the original variables, i.e. the 1st principal component will 
account for the most variability, then the 2nd, and so on.  Using 
the 1st and 2nd principal components a biplot
visualize the dominant aspects of variation in the 
Figure 1 shows an example biplot of the feeders in the dataset 
that have been projected to a 2-dimensional space.
The x and y axis of the biplot do not represent any particular 

unit and are bi-products of the PCA transformation.  The first 
step in the PCA transformation is the scaling of the data. 
Variables often have substantially different numerical ranges, 
for example voltage regulators might range from 0 to 8, and 3
Phase miles might range from 0 to 200.  Since PCA uses a 
maximum variance projection method scaling is necessary to 
prevent variables like 3-Phase miles from dominating over 
voltage regulators.  Unit Variance Scaling is done on each 
variable by dividing each value by the standard deviation.  
Each variable will then have equal (unit) variance.  Each 
variable also goes through a mean centering transformation 
where the average for each variable is calculated and then 
subtracted from each value.  This helps in improving 
interpretability of the model.   
Each point on the biplot in Figure 1 represents a single 

distribution feeder.  We can see areas of high density where 
the feeders will tend to share similar characteristics.  Points on 
the biplot that are isolated represent feeders that are more 
unique not sharing similar characteristics with other feeders, 
these represent outliers within the dataset.  
 
 

Fig. 1. Biplot of Feeders in Dataset. 
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     Figure 2 shows a vector for each variable used in the PCA 
transformation.  The vector plot shows 
upper right quadrant will tend to have larger kV, larger 
summer kVA capacity, a larger customer count, and a larger 
industrial customer count. 
 

Fig. 2. Vector Plot of PCA Transformation
 
 

   The PCA transformation is the basis for the k
clustering algorithm.  Feeders are separated/grouped
the proximity of their principal components.  Figure 3 shows a 
graphical representation of how the k
create 3 clusters. 
 

Fig. 3. K-Means Algorithm for 3 clusters
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Vector Plot of PCA Transformation. 

The PCA transformation is the basis for the k-mean 
clustering algorithm.  Feeders are separated/grouped based on 
the proximity of their principal components.  Figure 3 shows a 
graphical representation of how the k-means algorithm would 

 
Means Algorithm for 3 clusters. 



 

In the next sections we will discuss how to choose the 
variables to use for clustering and how to find the optimal 
number of clusters.  
 

B. Determining the Clustering Variables 

We determined which variables to use from the dataset by 
looking for  which were of interest and relevant to the projects 
goal of investigating interconnection impacts as well as 
choosing variables such that the optimum number of clusters 
is more accurately attained.  Primary voltage along with data 
relating to the length of the feeder can have significant impact 
on the ability to integrate PV systems into the circuit so these 
variables were chosen to study.  Variable related to regulating 
voltage on the line (regulators, capacitors, boosters) are 
important for classifying feeders and were added to the list of 
potential variables.  The types of loads on the feeder are also 
of interest and data relating to the type of customers 
(domestic, commercial, industrial, agricultural) on the circuit 
were examined.   Variables dealing with circuit protection 
(fuses, reclosers, etc.) are not tied directly to the topology of 
the feeder so this category of variables was not examined, 
however, protection issues will be captured in the analysis of 
the final feeders selected.  Data was available on the winter 
and summer peak loading on the feeder, but these variables 
were not chosen directly, but rather it was determined that the 
ratio of summer peak to winter peak would be of interest 
because the ratio is effective at identifying seasonal circuits.  
Lastly the KVA capability of the feeder was added to the list 
of variables to be studied.  
The optimum number of clusters is more accurately 

achieved when the variables chosen are independent of each 
other.  In order to achieve optimal clustering the correlation of 
the chosen variables was determined and were compared as 
shown in the heat map in Figure 4 below. 
 

 
Fig. 4. Correlation of feeder variables. 

 
TABLE I 

VARIABLE LABELS FOR HEAT MAP IN FIGURE 4 

 
 
 
Blocks of dark red on the heat map represent a high 
correlation between two variables.  Variables such as 3 phase 
over-head (OH) miles, 1&2 phase OH miles, domestic 
customers, and commercial customers were eliminated from 
the clustering list due to their high correlation with other 
parameters within the variable list.  The final list of chosen 
variables is shown in Table 2.   
 

TABLE II 
VARIABLES CHOSEN FOR CLUSTER ANALYSIS 

 
Primary 
Voltage Regulators Industrial 

Customers 
Ratio of Summer 

Peak to Winter Peak 

Total 3-
Phase Miles Capacitors Agricultural 

Customers 
Summer KVA 
Capability 

Total 1&2 
Phase Miles Boosters Total 

Customers   

 
By reducing the total number of variables the 

optimum number of clusters will more easily be achieved 
which will be shown later.  Also by reducing the number of 
variables related to customer data, this category will not 
dominate the clustering selection by watering down other 
important variables such as primary voltage and circuit length. 
This represents a good list of variables for clustering because 
it is not over burdensome, but yet still captures key topology 
issues of a distribution feeder.  

The list of variables from Table 2 will not necessarily 
be the same for each utility, and is dependent on the data 
available as well as the operation of the utility’s distribution 
system.  For example line voltage regulators, whose presence 
can have a significant impact on a feeder’s ability to manage 
distributed PV, may not always be a good cluster variable as 
in some California utilities they are not a common occurrence.  
Other variables, such as the conductor type (4/0, 336.4kcmil, 
etc.) may make an excellent candidate as a clustering variable, 
but may not always be available within the dataset.  

 

C. Determining the Optimum Number of Clusters 

The most difficult problem in cluster analysis is how 
to determine the number of clusters.  A quality metric for 
determining the optimum number of clusters is based on the 



 

Cubic Clustering Criterion (CCC) [8].  The optimum number 
of clusters can be derived from a CCC value based on 
minimizing the within-cluster sum of squares.  Although not a 
mathematical law and more of a rule of thumb that has been 
validated in the statistical community, the optimal number of 
clusters can be determined by plotting the CCC value against 
the number of clusters and finding a local maximum after the 
CCC rises above 2 and before it drops below 2.  It is important 
to note that you are not necessarily looking for the highest 
CCC value as this will be achieved when a cluster is created 
for each individual element which does is not representative of 
optimal clustering.  Statistical analysis was performed using 
the SAS JMP software tool to calculate the CCC value for 
each cluster number.   

In Section B we discussed the process for selecting 
the variables to be used in the clustering algorithm.  The 
down-select process for the variables to be used in the 
clustering algorithm helps finding the optimum number of 
clusters.  An example CCC plot is shown below in Figure 5 in 
which all the original variables were used in the clustering 
algorithm.  We see that there is a continual rise in the CCC 
value with no definitive peaks occurring until 22 clusters, and 
the CCC value does not drop back below 2.   

 
 

 
 
Fig. 5. CCC Plot with all variables. 

 
By following the method presented in section B for 

selecting the clustering variables we can more accurately find 
the optimum number of clusters.  Figure 6 shows a CCC plot 
when clustering around the variables from Table 2.  We see a 
definitive peak occurring at 12 clusters, followed by a drop in 
the CCC value below 2.  A comparison of the CCC plot for 
clustering with the final variables from Table 2 to the CCC 
plot of the original variables shows how a reduced variable list 
improves the clustering process.  
 

 
Fig. 6. CCC Plot with reduced variable list. 
 

 
Based on the CCC plot in Figure 6 a local maximum 

that met the clustering criteria was achieved at 12 clusters and 
this value was chosen as an optimum number of clusters. 

IV. SELECTION OF FEEDERS 

Once each feeder within the dataset was classified into one 
of the 12 clusters the next step was to identify the key clusters 
for further study.  Table 3 below shows the mean values of 
certain variables for each cluster; that is for each column listed 
the values shown are the average of all the feeders within that 
particular cluster.  This is why some of the values in the 
primary voltage column do not fall exactly within a standard 
distribution voltage kV level, as they are often the average of 
various voltage levels. 
 

TABLE III 
CLUSTER MEANS 

Cluster 
Feeder 
Count 

Primary 
Voltage 

Total 
3-
Phase 
miles Regulators Capacitors 

Total 
Cust 

90% 
Radius 

1 59 12.00 171.79 10.42 5.98 2267.68 60.73 

2 390 20.75 32.71 0.60 4.78 2920.27 39.83 

3 779 12.00 24.76 0.31 5.01 2874.60 11.88 

4 619 12.02 18.02 0.36 2.20 833.35 11.39 

5 13 19.00 173.10 11.92 7.62 3588.92 106.74 

6 28 13.32 62.59 1.86 2.82 786.39 139.55 

7 41 20.80 239.80 6.32 6.51 2524.59 89.63 

8 29 12.97 314.80 7.59 7.83 1781.03 110.43 

9 390 4.00 6.26 0.12 1.56 923.26 3.20 

10 164 12.27 85.93 3.86 4.68 2144.50 32.90 

11 111 12.18 222.20 6.32 6.37 1037.86 41.97 

12 294 12.02 117.92 3.09 4.88 860.91 20.62 

 
The far right column ‘90% radius’ value represents how 

tightly grouped the feeders are within the cluster.  The mean 
values represent the center of the cluster and the 90% radius 



 

column is the length of the radius from that center that 
captures 90% of the elements within the given cluster.  Figure 
7 below gives an example of a biplot for the elements within a 
single cluster.  
 

 
Fig. 7. Cluster Biplot. 
 
One of the objectives of the project is to identify 20 feeders 

representing the range of distribution feeder types within the 
California grid.  Since we are limited to a total of 20 feeders 
for further study it is necessary to be selective on what feeders 
to choose.  Due to this limitation on the number of feeders to 
study we examined each cluster to see if there was any 
grouping that could be eliminated as a cluster of interest.  
Clusters 5, 6, and 8 were eliminated because they are low 
population clusters that are not tightly grouped.  Clusters 3 
and 4 were similar so only one was chosen for further study, 
and Cluster 3 was picked because of its higher customer 
count.  Lastly cluster 10 was eliminated because the other 
12kV class clusters (1, 3, 11, 12) did a good job of capturing 
the range of values for the feeder variables.  Selection of the 
actual feeders from within the cluster was done by sorting the 
feeders by their distance from the mean, and choosing those 
feeders that are closest to the center of the cluster.  This 
method of feeders selection will give those that are best 
representative of the given cluster.  Different feeders may 
need to be selected based on the existence of SCADA 
equipment and PV monitoring equipment present on the 
feeder.  Once the potential feeders are identified the next step 
is to begin creating detailed models of the chosen feeders for 
analysis on PV screening methods. 
 

III. CONCLUSION 

This paper outlined the method for using the k-means 
clustering methodology for classifying distribution feeders 
into a sub-group and the use of the Cubic Clustering Criterion 
for determining the optimum number of clusters.  The 
significance of this work is that it demonstrates a method to 
classify distribution feeders into a specific subgroup.  This can 
have significant impact on the screening process for 
interconnection request of PV systems on the distribution grid.  
Through modeling and analysis a utility could determine 
which sub-group of feeders is more or less sensitive to the 
effects an interconnecting PV system might have on that 
particular feeder.  This could lead to a more streamlined 
approach to interconnection procedures to avoid unnecessary 
interconnection studies, cost, and delays.   
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